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1. Introduction 

Due to the complexity of the CAV driving environment including the varying number of cars 

surrounding the CAV, the size of decision-making inputs to the CAV controller may vary 

considerably in each time step. Traditional control and planning techniques may fail because they 

cannot directly manipulate the variable size of the input. This study presents a method to transfer 

the original inputs into fixed-size inputs using Deep Reinforcement Learning (DRL). The paper’s 

findings suggest that a DRL-based intelligent controller can perform efficiently. There is abundant 

research in the literature regarding the fixed input size, e.g., Mirchevska et al. (2017) assumes that 

the model can process only 20 features from surrounding vehicles; also, Saxena et al. (2019) use 

representations of a fixed number of occupancy grids. While these models are considered state-of-

the-art, imposing a fixed size restricts the number of vehicles in the environment that the CAV can 

perceive. Further, to extract useful information, grid representation requires a Convolutional 

Neural Network (CNN) which has two shortcomings: (1) less precision due to its black-box 

property; (2) extreme computational expensiveness that limits integration in real-time decision-

making. 

 

To address the shortcomings of fixed-size representation as the CAV learns appropriate control 

policies, Huegle et al. (2019) combined Deep Sets (Zaheer et al., 2017) and Q-learning(Watkins 

and Dayan, 1992). However, due to Deep Sets’s simple summation manipulation, the high-

dimension features are condensed into a single fixed-size vector. Useful information such as 

downstream vehicles’ speeds, locations, and lane positions are lost in the process. Additionally, 

the value of information among surrounding vehicles is not explicitly considered. As such, vehicles 

far away and vehicles nearby are treated equally through the same embedding network. Another 

research gap is that the Huegle DRL model is trained on datasets that only had successful and safe 

lane-changing transitions. Therefore, their model has limitations because collision-free decisions 

are never guaranteed in reality.  

The main contributions of this paper are: 

1) A DRL-based method that fuses local and system-wide information via Deep Sets 

modification.  

2) An end-to-end framework that controls the CAV’s collision-free lane-changing decision 

on the fused information.  

3) An assessment of the relationship between connectivity range sufficiency and traffic 

density. 



2. Methodology 

Model overview 

We use a classical Deep Q Network (DQN) to fuse all the input information, and output the CAV’s 

high-level lane-changing decision (Figure 1). For inputs, we consider 3 blocks: downstream 

information (within connectivity range), locality information (within sensor range) and ego CAV 

information. For each component, we all use multilayer perceptron (MLP) with detailed structure 

as follows. 

 Encoding network: Dense(64)  +  Dense(32) 

 Q network: 3 × Dense(64)  +  Dense(32)  +  Dense(16)  +  Dense(8) 

 Output layer: Dense(3) 

 
 

Figure 1. Proposed network architecture 

 

3. Experiment settings 

3.1 State space 

We consider the following features in the input representation: relative distance, relative speed and 

relative lane.  

𝒮 =  (

𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝐿𝑜𝑐𝑎𝑙𝑖𝑡𝑦
𝐶𝐴𝑉𝑖𝑛𝑓𝑜

) 

 

3.2 Weights 

To explicitly weight the dynamic inputs, we define the weights as inverse proportional to the 

distance to the ego CAV, and all sum up to 1. 



𝑤𝑖 =  
1/𝑑𝑙𝑖

∑ 1/𝑑𝑙1
𝑛
𝑖

  

 

3.3 Action space 

The action space is discrete for each time step indicating the possible actions the CAV can perform. 

𝒜 =   {𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝑙𝑒𝑓𝑡, 𝑘𝑒𝑒𝑝 𝑙𝑎𝑛𝑒, 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡}.  

 

3.4 Reward function 

The reward function consists of 2 rewards and 2 penalties: Speed reward 𝑅𝑣, destination reward 

𝑅𝐷, collision penalty 𝑃𝑐  and lane-changing penalty 𝑃𝐿𝐶. 

The overall reward function is defined as:  

𝑅𝑡𝑜𝑡𝑎𝑙 =  𝑤1𝑅𝑣 + 𝑤2𝑅𝐷 − 𝑤3𝑃𝑐 − 𝑤4𝑃𝐿𝐶  

Where: 𝑤1 𝑡𝑜 𝑤4 are the weights that can be tuned as a tradeoff between a vehicle’s “aggression” 

and its “comfort”.  

 

4. Results  

4.1 Comparative analysis 

Our proposed model is compared with the 3 baseline models including: the unweighted classical 

Deep Set Q learning model, rule-based lane-changing model and no lane changing model. The 

mean and median performance are compared in Figure 2 and Table 1. 

 
Figure 2. Mean and median performance for 10 episodes of test 

 

Table 1 Performance comparison for different models in different scenarios. 

 
 

It was observed that the proposed approach is most effective in the scenarios with 30 and 40 

vehicles. Also, it was seen that the CAV efficiency is greatly enhanced, and due to the proactive 

nature of its decision-making, the proposed weighted model outperforms all the baseline models. 

It was also observed that in highly congested scenarios, all the models performed poorly due to a 

lack of available space for vehicle maneuvering; on the other hand, at extremely low density traffic, 

the rule-based lane-change model exhibited the best performance, as expected.   

number of vechicles

models mean median std mean median std mean median std mean median std

No lane changing 1189.8 1191 19.5 1066.9 1062.4 21.8 828.1 825.5 51.9 942.2 951.5 28.1

Rule based  (LC2013) 1570.4 1456.6 359.2 1103.6 1112.1 87.4 801 806.5 47.1 810.9 813.1 34.3

Unweighted input 1510.7 1393.3 287.2 1071.6 1085.5 38.4 914.7 935.7 79.2 822.4 820.2 26.3

Weighted input 1559.5 1442.2 382.4 1182.2 1166.8 42.3 1039.9 1039.8 30.5 902.7 906.6 25.4

20 30 40 50



4.2 Optimal connectivity range analysis 

Further, the proposed model can be used to identify the CAV’s optimal connectivity range.  

As shown in Figure 3, as the connectivity range increases, the performance of the model increases 

dramatically initially and slows down with further increments of the range. The reason for this is 

initially, an increase in the connectivity range will introduce more downstream information to the 

CAV, which will be beneficial to the decision processor for taking proactive decisions. However, 

increasing the connectivity range will increase the variance due to the introduction of noise or 

unrelated information that in turn arises from the nature of human-driven vehicle (HDV) 

operations.  From the results (Figure 3), the optimal connectivity range is approximately 300 

meters; additional increments in the connectivity range yields little or no  reward to the CAV.  

 
Figure 3. Reward vs connectivity range in different density scenario 

 

5. Conclusion 

In this paper, we present an end-to-end DRL based processor to make high level decisions to 

control CAV lane changes. We demonstrate that the model has the capability to increase the CAV 

efficiency in mixed traffic. Future research can consider using connectivity and a data storage 

system to process temporal information such as historical data on the vehicle position, speed, and 

acceleration over a longer time period, and to use this data in the CAV’s decision process. Using 

such historical data, it will be easier to recognize the existence of barrier situations such as 

downstream workzones, accidents, or potholes that will require re-routing or preemptive evasive 

maneuvers. In addition, the DRL based method can be used in future research to make 

collaborative decisions that not only maximize the CAV’s individual utility but also benefit all the 

agents in the entire network. Examples of such future work include studies of traffic string stability 

enhancement and cooperative crash avoidance in emergency situations.   
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